
NOTATION 

u, velocity component along x axis; v, B, kinematic and dynamic viscosities; p, density 
of liquid; g, projection of the acceleration of free fall onto the x axis; ~, surface tension 
at the liquid--gas interface; F, surface concentration of insoluble surface-active material; 
h(x), film thickness; F(F), kinematic function expressing the dependence of the rate of the 
chemical surface reaction on the concentration of the surface-active material; k, reaction 
rate constant of dimensions I/T; Co, concentration of component of the gas which dissolves in 
the liquid close to the film surface; D, diffusion coefficient of gas dissolved in the film. 
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INFLUENCE OF LONGITUDINAL MIXING ON DISSOLUTION KINETICS OF A POLYDISPERSE 

SYSTEM OF PARTICLES 

S. P. Fedorov, Yu. V. Sharikov, 
and V. D. Lunev 

UDC 541.182:532.529 

The problem of dissolution of a polydisperse system of particles in a semibounded 
channel is formulated and investigated with longitudinal mixing in the solid phase 
taken into account~ 

To describe processes proceeding in polydisperse systems, methods of the mechanics of 
heterogeneous media [i, 2] have recently received greater and greater currency. According to 
[i], utilization of the so-called continuity equations for functions of the particle size 
distribution density type turns out to be most productive when studying the motion of inclu- 
sions interacting with a dispersion medium and hence changing size. Thus on the basis of 
this approach mathematical models of certain processes of such nature are obtained and in- 
vestigated in [3, 4]. 

Let us examine the steady process of dissolution of a polydisperse system of solid in- 
clusions entrained by a fluid flow moving in a semibounded channel. Such a representation 
can be used if it is assumed that the main particle mass is dissolved without succeeding in 
reaching the opposite boundary of the channel. Let us take the quasihomogeneity hypothesis 
[5] that the spacings in which the mixture flow parameters change substantially, are much 
greater than the particle size and their separation. We will consider the inclusions whose 
sizes are a continuous random variable, tobe sufficiently numerous so that their granulom- 
etric composition could be described by a continuous function of the size distribution dens- 
ity type (not normalized to one) that satisfies the continuity equation in the space of their 
linear dimensions. If the fluctuations of the linear rate of particle dissolution is neglec- 
ted, then for the developed turbulent flow case, the continuity equation can be written in 
the form 

-81 8r (fv) .i_ D al 2 . . . . .  8 (1 ~ Io) wfo (r). ( 1 )  
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Introduction of a solid phase in the channel is taken into account by the source component 
in the right side of (i), which indicates that all particles with initial distribution density 
fo(r) proceed in the channel section with coordinate Io # O. The condition of impermeability 
of the baffle at ~ = 0 for the solid phase and also the condition of no particles at I § 
because of their total dissolution up to the time of passing this point and for r § ~ that 
results from the properties of the distribution density function are formulated in the form 

[Iz=0 Dw OlOf t=0::0; tlimf(r' . . . . .  l )~0 ;  l imf(r ,  I )=0 .  (2) 

We find the linear rate of single particle dissolution from the mass transfer equation on the 
interface of the solid and liquid phases 

V (r, l) = k'~ [3 (r) (c*-- c). 
3pko 

A c c o r d i n g  to  [ 6 ] ,  t h e  form of  t h e  f u n c t i o n a l  dependence  8 ( r )  i s  due to  t h e  m a g n i t u d e  of  
t h e  r e l a t i v e  v e l o c i t y  o f  t h e  mo t ion  of  t h e  i n c l u s i o n  and t h e  f l u i d .  We s o l v e  t h e  f o r m u l a t e d  
p r o b l e m  f o r  an a r b i t r a r y  de pe nde nc e  o f  t h e  mass t r a n s f e r  c o e f f i c i e n t  on t h e  l i n e a r  d i m e n s i o n  
of the particle. In the general case the moving force of the dissolution process c* -- c 
varies along the channel length while the running concentration c is related to the mass of 
the substance being dissolved by the conservation equation, which makes the problem (i) and 
(2) nonlinear and results in mathematical difficulties in its solution. We assume that dis- 
solution occurs in a large volume and the moving force retains a constant value, then the in- 
fluence of the longitudinal mixing on the granulometric composition of the inclusion can be 
set up on the basis of an analytic solution of the problem (i) and (2). 

Let us give the scale of the particle size r m and let us select as characteristic length 
L the extent of the section that a particle will traverse that has a dimension r m at the 
beginning of the path as it moves along the channel axis at the mean velocity w until com- 
plete dissolution 

FD~ 

L : 3wpku [ dr 
k~ (c*-c) ~. 13 (r) 

Let us go over to dimensionless variables by means of the formulas 

x : r/rm, y = l/L, Yo: lo/L, U (x, y) = [ (xrm, vL) r,fiL. (3) 

Executing the change of variables 

z (x) --= [ d~ . V [z (x), y] = [3o (x) U (x, y) e• | Y-r- ; 
60 (D t 

(4) 
V~176176 - P--~-e z(x)] ' 4  

where 

r m 

6o(X~=: ~(xrm) [ dr . wL U o(x)=[o(xr~)rmsL , 
rm ~ ~ ( r ) '  Pe . . . .  ; J " D 

we write the initial equation (i) in the more compact form 

6V 1 3zV 
Oz ' Pe Oy z 

w h i l e  t h e  bounda ry  c o n d i t i o n s  (2) t a k e  

_1_1 VI 1 c)V 
2 y=0 Pe 3y 

- -  q- 8 (g - -  go) exp ( - -  Pe �9 - ~  y) Vo(~) =o, 

the following form in the new variables (4) 

- - I  = 0 ;  limV(z, y ) = O ;  limV(z, y ) = O .  

(5) 

(6) 

It is possible to go over to the true function of the distribution density type f(r, Z) 
by means of the function 

V[z(r/rm), l/L] exp [ Pe (2l/L + r/rm)] . 
[(r'O= ,mSL~o~,/,ol) ....... [ 4 
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Solving the problem (5) and (6) by using the Fourier transform [73 and returning to the 
dimensionless variables (3) by using the relationships (4), it can be shown that the solution 
of the initial problem (i) and (2) is determined by the formula 

_ _  i / /*_~_~{  [ Pe( y )21 [ Pe /~-]} 
U (x, y) = 260 (x) �9 + exp - - 4  t / dg - -  

(7) 

260 (x) . t 
X 

where 

t = V z  (~) - Z (~).  (81 

To simplify the further interpretation of the solution obtained, it is convenient to 
execute  a change of v a r i a b l e  of i n t e g r a t i o n  in  (7) .  Using (8) ,  we ob ta in  

oo  

/J(x, g )=  [3o(--- ~,1 / Pe~ g t * W ( t ' x ) { e x p [ - - P e g ~  t g + g ~  + t  
0 

(9 )  oo  

dt I (t, x) t erfc t -+ g + go 
+ exp 4 t �9 2[5 o (x) o t 

0 

Here 

where z- 
particle flux through an arbitrarY channel section 

oo 

1 OU _ 1 .... W( t ,  x) exp 4 
U (x, g) Pe Og 260 (x) o 

--  exp Pe g 4 t + 

(t, x) = 6o {z -1 It 2 + z (x)l} Uo {z -1 It ~ + z (x)l}, 

* i s  the  i nve r se  func t ion  to z (x ) .  By using (9) we compute the  s p e c i f i c  s o l i d  phase 

----(t Y--~~ )2] ( 1+t y--y___~ot ~ )_ 

9+Y~ dt.t2 
(lO) 

The right side of (i0) has discontinuity at the point of solid phase insertion with coordin- 
ate Yo. If the function W(t, x) is bounded in t in the interval (0, =) and is continuous at 
the point t = 0, then it can be shown that the magnitude of the jump at the point of discon- 
tinuity is Uo(x). 

Graphs of the function U(x, y) constructed by means of (7) for fo(r) = No6(r -- r m) or 
in dimensionless form Uo(x) = NoSL6(x -- I) for the case 8o(x) = const = i are represented in 
Fig. i, from which it follows that an increase in the dispersion of the inclusions occurs 
under the effect of longitudinal mixing with distance from the point of solid phase insertion. 
A graph of the function fo(r) corresponding to monodisperse composition of the particles de- 
livered to the channel entrance is marked by the dashed line. 

The solution (7) or (9) obtained is suitable for the whole range of Pe numbers, however, 
calculations using these formulas for large values of Pe can yield significant errors because 
of the nonuniform convergence of the integral in the parameter Pe, in which connection we pre- 
sent an asymptotic expansion of (9) obtained for large Pe numbers by the Laplace method [8] 
in the form 

(11) 
where Ai, Bi, Ci, E i are coefficients of the Maclauren series expansion in powers of ~ for the 
functions 
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u(x,y).Ir 8 

.~5 I 

F i g .  1. D i m e n s i o n l e s s  f u n c t i o n  o f  t h e  p a r t i c l e  s i z e  d i s t r i b u -  
t i o n  d e n s i t y  t y p e  a t  t h e  p o i n t  y = 1 f o r  Pe = l 0  and No = 0 .9*  
10 8. C o r r e s p o n d i n g  to  t h e  c u r v e s  1 -11  a r e  t h e  f o l l o w i n g  v a l u e s  
o f  t h e  d i m e n s i o n l e s s  c o o r d i n a t e  o f  t h e  p o i n t  o f  s o l i d  p h a s e  
i n s e r t i o n  Yo = 0 . 1 ,  0 . 2 ,  0 . 3 ,  0 . 4 ,  0 . 5 ,  0 . 6 ,  0 . 7 ,  0 . 8 ,  0 . 9 ,  1 . 0 ,  
1 . 1 .  

I ( 1 +  t 
2 2 --f- +Yo--Y 
I ( 1 +  t 
2 2 ] / /  x2 

--4- + y -- Yo 

W 

W 

Y + Y0 ] W (~, x) d~. 
1 - -  z2 �9 t z 

- - f  + y + y o +  T ~ / - - 4 -  + y + y o  
.1 

T " T2 

T+Yo+Y 

0 

As Pe § ~, by limiting ourselves to the first terms in the expansion (ii) we obtain 

U(x, y) = l----!---H(y--yo) W [-I/y--yo, x). (12) 
8o (x) 

The formulas (7) and (9) for functions of the particle size distribution density type 
permit computation of their concentration profile along the channel length, which is deter- 
mined by the initial zeroth order moment for the function f(r, Z), for which the expression 
in the variables (3) has the form 

~o(Y)= f U ( x '  y) = Uo(~) 1 + e r r  ~ q - -  
b 2 o q 

--exP[Pe(y-- Yo)]erfc [ ~--~e (q + Y--Y~ ) ] ] H (y-- + 

+ e x p [ - - P e ( y o - - y ) l + e x p b - P e ( y o - - y ) l e r f  ~ q ~ .  - -  

erfc [ V-~e (q + Y~ ) ] 1j --- ~ | H (Yo - -  Y) - -  Pe (y + go + q~) exp (Pe y) X 
q 

• erfc q + y + Yo + 2q exp Pe y q + d~, 
q . 4 q 

where  q = z ( r  
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Fig. 2. Dependences of the dimensionless zeroth moment of the 
function on the Coordinate y for Yo = 0.3 and No = 0.9.10' and 
different values of Pc: i) Pe : i, 2) 2, 3) 3, 4) 5, 5) i0, 6) 
14, 7) 28, 8) 37, 9) 41. 

In the ideal displacement regime (12) the expression (13) becomes 

~o (Y) = H (Y Yo) S Uo (~) d~, (14) 
z- 1(y--yo) 

Presented in Fig. 2 are graphs of the function (13) for the case considered above. The 
dashed curve corresponds to the limit expression (14). Instantaneous dissolution of all par- 
ticles of a narrow fraction delivered to the channel entrance and achieving the zeroth dimen- 
sion at this point occurs at the point of intersection of all the graphs with abscissa y = 
Yo + 1 : 1.3 in the ideal displacement regime. As is seen from the figure, a diminution in 
the number Pe results in an increase in the length of the effective section of the channel 
needed to dissolve the main part of the inclusions, 

The relationship (13) should satisfy the conservation equation for the integral balance 
of the number of particles for an arbitrary channel section, that can be obtained from (i) 
by integrating it with respect to r between the limits (0, ~). In the dimensionless variables 
it takes the form 

dl% 1 d2&o 
+ l im (U[~o) - -  6 (g - -Yo)  P~* ---- 0 ( 1 5 )  

dy P e  dg 2 ~-o 

with boundary conditions that result from the conditions (2) in the form 

1 d~o ] 
- -  = O; lim P,o (Y) = O, ~olv=o Pe dy v=o v ~'~ 

where 

T 
~:= I Uo(~)~. 

The first source component in (15), which appears in a natural manner upon integration 
of the initial problem is the number of particles being dissolved completely per unit volume 
of suspension per unit time in a given channel section. This component is a result of the 
polydispersity of the particle composition, that results in the fact that in each channel 
section inclusions of all the dimensional groups, including even particles of vanishingly 
small size which are continuously driven out of the integral balance of particles during 
dissolution, are present with a certain probability. By calculating the limits we obtain 
the following dimensionless expression for the intensity of inclusion "disappearance": 

I (y) = x~olim (U~o) = ~ 1  1/__v ~ q exp --- Pe Yo 
0 
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Fig. 3. Dependence of the intensity of particle 
"disappearance" on the coordinate y for the initial 
distribution Uo(x) = NoSL6(x -- i), Yo = 0.3, No = 
0.9.108 and different values of Pc: I) Pe = i, 2) 5, 
3) i0, 4) 14, 5) 19, 6) 23, 7) 28, 8) 37. 

Pe( I [ Pe( .... 
-i-exp - - - -  7 d~--- 

4 q q 4 q 

e~ 

2 q . 
0 

(16) 

or for case (12) 

I (y) = H (g - -  Y0) ~0 [ z-~ (g - -  Y0)] Uo [z-'  (g - -  Y0)!. (17) 

Graphs o f  t he  f u n c t i o n  (16) a r e  d i s p l a y e d  in  F i g .  3 f o r  t he  example unde r  c o n s i d e r a t i o n ,  f rom 
which  i t  f o l l o w s  t h a t  as  t he  number Pe grows t he  domain i n  which d i s a p p e a r a n c e  o f  t h e  main 
mass o f  p a r t i c l e s  o c c u r s  c o n t r a c t s  and in  t he  l i m i t  c a s e  of  •  d i s p l a c e m e n t  (17) t h e  whole  
domain i s  c o n c e n t r a t e d  i n t o  one p o i n t  y = Yo + 1 = 1 .3  and t he  f u n c t i o n  I ( y )  d e g e n e r a t e s  i n t o  
a 6 - f u n c t i o n  d e n o t e d  by the  dashed  c u r v e ,  

In  t h e  s t e a d y - s t a t e  r eg ime  t h e  number o f  p a r t i c l e s  d e l i v e r e d  to  the  e n t r a n c e  pe r  u n i t  
t ime  s h o u l d  e q u a l  t h e  number o f  p a r t i c l e s  b e i n g  d i s s o l v e d  c o m p l e t e l y  in  t he  c h a n n e l  i n  t h a t  
same time, or in dimensionless form 

l (y) dy = j" Uo (x) dx. (18) 
0 0 

I t  can  be seen  by d i r e c t  c a l c u l a t i o n s  t h a t  i n  b o t h  t he  main (16) and t he  l i m i t  (17) c a s e s  t h i s  
equality is conserved. 

The following expression is valid for the total number of particles found in the channel 

a == ~o (y) dy = J Uo (x) z (x) dx, (19) 
0 0 

which  shows t h a t  d e l a y  G i s  d e t e r m i n e d  c o m p l e t e l y  by t he  r a t e  of  a c c e s s  and t he  r a t e  o f  d i s -  
s o l u t i o n  o f  t he  i n c l u s i o n s  and i s  i n d e p e n d e n t  o f  t h e  mix ing  r eg ime  in  t he  c h a n n e l  and t h e  
coordinate of the solid phase insertion. 

Retention of the conservation conditions (18) and (19) indicates admissibility of the 
assumptions made in formulation of the problem, and correctness of the solutions obtained. 

Utilization of the distribution density type function f(r, Z) and the continuity equation 
for it permits estimation of the physical meaning and the structure of the source term in (13) 
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for the particle concentration, whose appearance is due to polydispersity of the inclusions. 
Analysis of (7), (Ii), and (12) as well as Fig. 2 indicate that as the number Pe increases 
the particle size distribution density type function is narrowed and the length of the effec- 
tive channel section is diminished. 

Taking account of the influence of longitudinal mixing on the granulometric composition 
of particles being dissolved can contribute to refinement of the mathematical models of a 
number of processes with the participation of polydisperse systems. 

Remar ~. The function f(r, ~) is defined as follows: f(r, l) = d/dr N(r, l), where dN(r, 
~) is the number of particles per unit volume of suspension, per size interval (r, r + dr). 
where dr is generally understood not mathematically but physically as an infinitesimal size 
range, i.eo, a sufficiently small range as compared with the particle sizes but still con- 
taining a sufficiently large quantity of them at the same time so that an insignificant change 
of the number of particles in it does not, in practice, change the function f(r, l) as com- 
pared with its absolute value. This latter circumstance permits extension of the domain of 
values of this function to the whole real half-line and to apply the operations of differenti- 
ation and integration to it in the ordinary sense. 

NOTATION 

f(r, l), fo(r), particle distribution density type functions in the dimension r in a sec- 
tion with coordinate ~ and at the channel entrance; v(r, ~), linear rate of dissolution of a 
single particle; w, mean velocity of the solid phase flux; D, flux longitudinal mixing coef- 
ficient; S, channel section area; 6, Dirac function; c and c*, concentrations of the dissolved 
substance in the flux core and on the solid particle surface; B(r), mass transfer coefficient; 
k w and kv, surface and bulk coefficients of particle shape; L, channel length scale; x, y, 
U(x, y), Uo(x), dimensionless variables; 6, interior variable of integration; Pe, Peclet 
number; H, Heaviside function; ~o(Y), zeroth-order initial moment of the dimensionless func- 
tion of the particle size distribution density type; No, number of particles per unit volume 
of suspension at the channel entrance; l(y), intensity of particle "disappearance"; p, solid 
phase density; rm, scale of particle size. 

LITERATURE CITED 

I. I.N. Dorokhov, V. V. Kafarov, and E. M. Kol'tsova, Zh. Prikl. Mekh. Tekh. Fiz., No. i, 
103-110 (1978). 

2. F.G. Akhmadiev, Inzh.-Fiz. Zh., 45, No. 2, 251-256 (1983). 
3. P.M. Kolesnikov and T. A. Karpova, Inzh.-Fiz. Zh., 33, No. 1, 157-161 (1977). 
4. S.P. Fedorov, Yu. V. Sharikov, and V. D. Lunev, Inzh.-Fiz. Zh., 46, No. 3, 521-522 

(1984). 
5. R.I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media [in Russian], Moscow 

(1978). 
6. G.A. Aksel'rud and A. D. Molchanov, Dissolution of Solid Substances [in Russian], Moscow 

(1977). 
7. G.M. Fikhtengol'ts, Course in Differential and Integral Calculus[in Russian], Vol. 3, 

Moscow (1969). 
8. M.A. Lavrent'ev and B. V. Shabat, Methods of Complex Variable Function Theory [in Rus- 

sian], Moscow (1973). 

1168 


